
THERMOPHYSICAL PROPERTIES OF 
SUPERCRITICAL FLUIDS 

 
Pierre Carlès* 

Laboratoire Fluide, Automatique et Systèmes Thermiques 
Université Pierre et Marie Curie – Paris 6 / CNRS 

Bâtiment 502, Campus Universitaire, 91402 Orsay Cedex, FRANCE 
Email : pierre.carles@upmc.fr , Tel : (33)1.69.15.80.48 

 
 
ABSTRACT 
 

This article presents a general introduction to the physics and dynamics of supercritical fluids 
and the critical point. It is organized in two parts: In a first section, the nature of the critical 
point is discussed and its influence on the properties of supercritical fluids is presented; In a 
second section, we then examine the dynamic processes induced by these peculiar properties, 
concentrating on heat and mass transfer and more generally on relaxation phenomena. 
 
 
INTRODUCTION 
 

Although supercritical fluids have been used in various industrial applications for the 
past 60 years, it is only in the early 70s that their peculiar thermophysical properties have 
been understood, following the works of Widom, Kadanoff and Wilson. Hence, the 
understanding of the physics of critical points is a relatively recent result (around 30 years-
old). If one now considers the dynamic relaxation phenomena in these fluids (and among 
them heat transfer and hydrodynamics), then the main discoveries are even younger: a mere 
15 years, with lots of open questions remaining. Making a short summary of these recent 
results seems useful to an application-oriented audience: integrating this recent knowledge 
may indeed help optimize existing processes, and possibly stimulate the design of new 
approaches heretofore not considered for lack of a better understanding of what is going on 
near the critical point. 

The aim of this article is to present a brief review of the present knowledge about the 
thermophysics and dynamics of supercritical fluids, in qualitative terms. For the more 
technically-oriented reader, a list of key references is provided. In a first part, general 
considerations about the thermodynamics of supercritical fluids are reminded. In a second 
part, the most significant mechanisms governing the dynamics of these fluids are introduced. 
 
THE CRITICAL POINT AND SUPERCRITICAL FLUIDS 
 

Phase diagram of a pure component 
 

 Following Gibbs phase rule, a pure component in thermodynamic equilibrium can be 
observed under the form of three different phases (sometimes more), determined by only two 
independent state variables. The complete set of accessible equilibrium states is thus a surface 
in the three-dimensions space of state variables. Such a State Surface is represented in figure 
1 with the particular choice of state variables P (pressure), ρ (mass density) and T 
(temperature). Most state surfaces of classical components have a similar topology. In figure 
1, one can also see the projections of the state surface on the planes (P, T) (Pressure, 

1 



Temperature) and (P, 1/ρ) (Pressure, Elementary Volume). The three usual states of matter 
are represented, separated by Coexistence Curves. 
 
 
           SCF 
     P     L     SCF          P  
     S  Critical              Critical   
   Point               Point 
            S        L 
 
              V             SCF                V 

   Critical Point 

       1/ρ         P  S        L 
          T 
            V 
 
   
     1/ρ   T 
 

Figure 1 : State Surface of a pure component 
S = Solid, L = Liquid, V = Vapour, SCF = Supercritical Fluid 

 
If the (P, T) set of variables leads to a state located inside a coexistence curve, then the pure 
component is observed under the form of two coexisting phases. One can observe that the 
liquid-vapour coexistence curve is not infinite, but presents a maximum. Consequently, the 
liquid and vapour states cannot be considered as two separated states, but as the extremes of 
the same continuum (like indicated by the dotted arrow, showing how a continuous transition 
between vapour and liquid is possible). The first observation of this continuous transition was 
made in 1822 by Baron Cagniard de la Tour [1]. It stimulated long discussions between 
Farraday and Herschel in the mid-nineteenth century, but it is only through the works of 
Andrews [2] and van der Waals in 1873 [3] that a first theoretical model explaining this 
transition was obtained. 
 Andrews named the top of the liquid-vapour coexistence curve the Critical Point, 
owing to its singular nature. A fluid whose temperature is higher than the Critical 
Temperature (i.e. the temperature of the critical point) is neither a gas nor a liquid but a 
Supercritical Fluid. Because of their specific position in the phase diagram, fluids in the 
supercritical domain exhibit peculiar properties, sometimes similar to those of gases and 
sometimes to those of liquids. Unlike the liquid-vapour coexistence curve, the liquid-solid 
coexistence curve is considered to be infinite. No maximum has indeed been observed so far 
on this curve, and many authors consider that the structural symmetries of liquids and solids 
are too different to allow for a continuous transition [4]. 
 

Thermodynamic stability and chemical potentials 
 

 A few classical results of thermodynamic stability will now be reminded, which 
enable a qualitative interpretation of the existence of a critical point and of the peculiar 
properties observed in its vicinity. Let us consider Gibbs Potential, defined as: 
 

G = U + P / ρ – T S         (1) 
 

where U is the Internal Energy and S the Entropy (per mass unit). 
 Thermodynamics’ second principle implies that G is a thermodynamic potential for 
systems at constant pressure and temperature [5, 6, 7]. This means that for a given set of 
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values of variables (P, T), a system is in a state of equilibrium if G is minimal. Moreover, this 
equilibrium is stable if G is a convex function of T and P [7]. In other words, the stability of 
an equilibrium state is governed by the following inequalities: 
 

∂2 G ∂T 2( P)  < 0     and    ∂2 G ∂P 2( P)  < 0      (2) 

 But   dG  =  - S dT  +  1
ρ

 dP     and    dS  =  CP

T
 dT  +  1

ρ2
∂ρ
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

P

 ,   hence: 

∂2 G ∂T 2( )P
= − ∂S ∂T( )P = − CP T   <  0     (3) 

 

∂2 G ∂P 2( )T
= − ∂ρ ∂P( )T ρ2 = − κT ρ   <  0     (4) 

 

 where κT is the isothermal compressibility. Consequently, a pure component is in a 
stable state if, and only if, its isothermal compressibility and heat capacities are positive 
(conditions (2) and (3)). 
 Let us now analyse the (P, 1/ρ) projection of the state surface represented in figure 2. 
Several isotherms have been drawn, below and above the critical temperature. The thin dotted 
line represents the theoretical extension of the isotherms inside the coexistence curve. 

 
Figure 2 : Coexistence and spinodal curves 

 
 Above the critical point, the slope of the isotherms is always negative. In other words, 
the isothermal compressibility is always positive, and condition (4) is always fulfilled. Let us 
now consider a fluid container filled with a supercritical fluid at critical density, whose 
temperature is slowly decreased. In figure 2, one observes that the isotherms tend to become 
more and more horizontal when the critical point is approached: the compressibility of the 
fluid is increasing near the critical point. When the critical point itself is reached, the tangent 
of the isotherm is flat: compressibility is infinite. If the temperature is decreased further, the 
fluid enters the two-phase zone (for instance reaching point b) and a phase separation occurs: 
the container now contains an equal proportion of liquid (characterised by point a) and of gas 
(characterised by point c), both at the same pressure and temperature. At point b, the 
theoretical extension of the isotherm exhibits a positive slope. A one-phase fluid in average 
conditions b would exhibit a negative compressibility, and would thus be mechanically 
unstable. The process of phase separation along the critical isochore can thus be viewed as a 
loss of mechanical stability: at the critical point, the single-phase supercritical fluid looses its 
stability and separates into two stable phases (this happens through what the specialists in 
non-linear dynamics call a supercritical pitchfork bifurcation [8]). 
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 However, one can observe that part of the isotherms inside the coexistence curve (i.e. 
the dotted line on figure 2) still maintain a negative slope. The limit of this domain is 
materialized by a solid line in the figure and called the Spinodal Curve. Between the 
coexistence curve and the spinodal curve, the fluid is locally stable but its Gibbs Potential is 
not minimal for all possible states at the same pressure and temperature: this is the domain of 
the Metastable state, where a phase can be maintained as long as only very small 
perturbations take place but which suddenly destabilizes for sufficiently large perturbations. 
Using the vocabulary of stability, the critical point is defined as the point where mechanical 
stability becomes neutral, namely: 
 

 ∂P ∂ρ( )T Tc , Pc( ) = 0 (infinite compressibility)    (5) 
 

 ∂2 P ∂ρ2( )T
Tc , Pc( ) = 0 (inflexion point on the critical isotherm)  (6) 

 

∂3 P ∂ρ3( )T
Tc , Pc( ) > 0 (stability of the critical isotherm)   (7) 

 
Critical phenomena 

 

 Heuristic approach 
 

 We have just seen that close to the critical point, compressibility goes to infinity. 
Other physical properties of the fluid also diverge. The divergences of the fluid’s 
thermophysical properties close to the critical point are named Critical Phenomena. These 
phenomena represent the different mechanisms through which the one-phase supercritical 
fluid « gets prepared» to phase transition. 
 Let us look back at the behaviour of compressibility, for instance. If one considers a 
container filled with a fluid in average conditions b (figure 2), the fluid inside the container is 
made of liquid a in equilibrium with vapour c. If the container is compressed a little (i.e. if its 
volume is reduced by a small amount), the two-phase equilibrium is displaced towards larger 
densities, and the amount of liquid is increased while the amount of vapour is decreased. If 
the change in volume is not too large, this transformation takes place on the a-c line, which is 
both an isotherm and an isobar. Hence, the average density of the fluid inside the cell can be 
changed without changing its temperature or its pressure : the two-phase system behaves like 
an infinitely compressible media. The diverging of compressibility close to the critical point 
can thus be seen as a way for the supercritical fluid to progressively adapts its behaviour to 
that of a two-phase system. The same analogy could be made with the heat capacity at 
constant pressure, which also diverges at the critical point. A two-phase system on line a-c is 
such that it can receive energy at constant pressure without any temperature increase: all the 
energy sent into the system is expended as latent heat in order to change liquid into vapour. 
Such a system thus behaves like a medium with infinite heat capacity at constant pressure. 
 
 Critical divergences 
 

 The above description of critical phenomena is only qualitative. However, it illustrates 
in a clear way how a fluid getting close to the critical point exhibits a singular behaviour. The 
divergence of the fluid’s properties at the critical point, which are universal (in some sense 
detailed below), can all be written as power laws of a parameter measuring the distance to the 
critical point. For instance, the divergence of the isothermal compressibility along the critical 
isochore can be written : 
 

 κT = Γ |ε| - γ with  ε = T − Tc( ) Tc        (8) 
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 In this example, the distance to the critical point is expressed by the parameter ε 
(named the Reduced Temperature), and the property diverges with the exponent γ, named 
Critical Exponent. Γ is the Cofactor of the power law. In table 1, the critical divergences of 
the properties of a pure fluid are summarized. As will be seen later, these exponents are the 
same for all pure fluids, and this universality (Critical Universality) is observed even beyond 
fluid systems. 
 

Property Thermodynamical 
Path 

Critical 
Divergence 

Critical 
Exponent 

Isothermal 
compressibility Critical isochore κT = Γ |ε| - γ    γ = 1,239 ± 0,002 

Heat capacity at 
constant volume Critical isochore Cv = A± |ε| - α    α = 0,110 ± 0,003 

Density difference 
between liquid and gas Coexistence curve ρl – ρg = 2B |ε| β    β = 0,326 ± 0,002 

Pressure difference 
with critical pressure Critical isotherm |ΔP| = D |Δρ| δ    δ = 4,80 ± 0,02 

Correlation  
function1 Critical point, large r h(r) = r 2 – d - η    η = 0,031 ± 0,004 

Correlation  
length2 Critical isochore ξ = ξ0 |ε| - ν    ν = 0,630 ± 0,001 

 

Table 1 : Diverging properties close to a critical point and associated critical exponents;  
given a property X, ΔX = (X – Xc) / Xc (after [4]) ; d represents the spatial dimension, 

r the distance away from a given molecule 
 
 Several comments can be made about Table 1. First, the critical divergence of a 
property is defined along a well-defined thermodynamic path. Of course, a diverging quantity 
will diverge for any thermodynamic path leading to the critical point. It is fairly easy to find 
the correspondence between the critical exponent along the critical isochore and the critical 
exponent along the critical isotherm or the coexistence curve for a given property (see [4]). 
For more complex paths however, this correspondence can be made only through the 
knowledge of an equation of state. The knowledge of precise equations of states near the 
critical point is a major difficulty in the study of near-critical fluids (this topic will not be 
dealt with in this article). The second comment which can be made about Table 1 is that the 
isothermal compressibility, the heat capacity at constant volume and the correlation length all 
diverge at the critical point. Several other divergences can be deduced from these three ones. 
For instance, following generalised Mayer’s relation [6]: 
 

 Cp − Cv = −
T
ρ2

∂P
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

2
∂ρ
∂P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

       (9) 

 ∂P ∂T( ρ)

                                                

 does not diverge at the critical point and Cv diverges with a small exponent 

(α ≈ 0,11). Consequently, Cp diverges like the isothermal compressibility, that is, with an 
exponent γ ≈ 1,24. Besides, sound velocity c can be expressed as : 
 

 
1 Correlation function h(r) mesures the statistical correlation between density at a given point and density at a 
distance r from this point. For large values of r, it goes to zero. Far from the critical point, h(r) can be written as  
e – ( r / ξ ) / r, where ξ is the correlation length. 
2 The correlation length, defined in the previous note, measures the spatial extension of density fluctuations. 

5 



c 2 =
Tc

ρc
2 Cv

∂ P
∂ T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

2

+
∂ P
∂ ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

       (10) 

 

Consequently, sound velocity goes to zero at the critical point like 1 Cv , that is, with 
a very weak exponent (α / 2 ≈ 0,05). Finally, the divergence of the correlation length has a 
strong influence on the critical behaviour of transport properties and of surface tension. Using 
arguments drawn from statistical physics, it can be shown that shear viscosity ηS and thermal 
conductivity λ diverge at the critical point, while surface tension between liquid and vapour 
goes to zero (which can be qualitatively explained by the greater and greater similarity 
between the two phases close to the critical point). Along the critical isochore, the following 
relations hold [4] : 
 

λ ≈ λ0 ΔT ν +  η − γ         (11) 
 

ηS ≈ η0 ΔT – η          (12) 
 

 The divergence of thermal conductivity3 should not lead the reader into thinking that a 
fluid close to the critical point is a better and better heat conductor. Indeed, the diffusive 
relaxation of temperature is extremely slow, since it depends on the Thermal Diffusivity λ / 
(ρ Cp) which goes to zero (the divergence of Cp is indeed stronger than that of λ). This 
slowing down of the relaxation of entropy at the critical point is classically named the Critical 
Slowing Down. As will be seen later in this chapter, this slowing down contradicts the 
experimental observation of a Critical Speeding Up of temperature relaxation at the critical 
point. Several authors also predict a critical divergence of the bulk viscosity [9, 10], but it has 
a practical influence only extremely close to the critical point [11-13]. Hence, this divergence 
is of little importance in an operational context. 
 
 Classical models and their limits 
 

 The first model proposed to explain the behaviour of fluids close to their critical point 
was van der Walls’ model, based on a now famous equation [3]. This model was very 
successful in explaining how microscopic phenomena induced macroscopic divergences at the 
critical point. It is now seen as a particular case of a broader category, named Classical or 
Mean Field Models4. These models share the property of having equations of state which are 
analytical at the critical point (i.e. which can be expanded as Taylor series at the critical 
point). It can be shown that all equations of state which are analytical at the critical point 
result in the same (incorrect) critical exponents. Let us consider the equation of state of a 
fluid, written as P = f (T, ρ) with f(T, ρ) being analytical at the critical point. If the small 
excursions from the critical co-ordinates are named δT = T – Tc and δρ = ρ – ρc, a third-order 
Taylor expansion of P at the critical point yields (inserting conditions (4-6)): 
 

 P  =   Pc  + ∂P
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

C

  δT  +  1
2

∂2 P
∂T 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

C

δ T 2 +
∂2 P

∂T ∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

C

δ T δ ρ +
1
6

∂3 P
∂T 3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

C

δ T 3 

       + 1
2

∂3 P
∂T2 ∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

C

δT2 δρ +
1
2

∂2 P
∂T ∂ρ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

C

δT δρ2 +
1
6

∂3 P
∂ρ3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

C

δρ3  +  …  (13) 

                                                 
3 ν +  η − γ is indeed negative. 
4 Ginzburg-Landau’s model also belongs to this category [6]. The name of Mean Field Models comes from the 
fact that these models are based on the assumption that the molecular interactions globally act as a mean field 
independent of the molecular distribution. 
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where the superscript « c » represents the value at the critical point. Looking for exponent δ 
(which relates ΔP to Δρ), one imposes δT = 0 and obtains : 

 δP  =  1
6

∂3 P
∂ρ3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

C

δ ρ3 + … ,  hence   δ = 3   (14) 
 

In the same way, the exponent γ (which measures the divergence of isothermal 
compressibility along the critical isochore) can be found by deriving eq. (7) with respect to ρ 
and letting δρ = 0: 

 ∂P
∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

  =  ∂2 P
∂T ∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

C

δ T   +  … , hence   γ = 1   (15) 

The other critical exponents can be calculated in the same way, while the exponents 
linked with transport properties can be obtained through statistical physics equations. The 
above results illustrate the failure of classical theories to describe critical phenomena in a 
proper way, a problem which has been identified as soon as the early 50s [5]. 
 
 Universality and critical fluctuations 
 

 The reason for the failure of mean-field models at the critical point lies in the 
behaviour of critical fluctuations. Indeed, the thermodynamic formalism is statistical, and all 
thermodynamic quantities like temperature or internal energy are the result of an averaging 
process over a large number of molecules. Locally, the properties of the medium can exhibit 
excursions away from the average values (fluctuations), whose statistics can be predicted 
using statistical physics [5]. Most macroscopic transport or thermostatic properties are related 
to the statistical distribution of fluctuations. For instance, the isothermal compressibility is 
proportional to the root mean square of density fluctuations, while the heat capacity at 
constant volume is proportional to the root mean square of internal energy fluctuations [5]. 
Hence, the critical divergence of these two properties (among others) is directly related to the 
singular behaviour of fluctuations. As the divergence of the correlation length ξ shows, 
fluctuations become larger and larger near the critical point. Consequently, a critical system is 
a system where long-range correlations are dominant. This explains why mean-field theories 
fail (they average these long-range correlations). 
 The critical divergence of the typical size of fluctuations can be observed 
experimentally through the phenomenon of Critical Opalescence : when a fluid sample is 
brought close to its critical point, it takes a white and fog-like colour. This phenomenon is 
observed when the density fluctuations become of the same typical size as the wavelength of 
visible light : density fluctuations are then large enough to diffuse light. As in the heuristic 
approach of critical phenomena described above, one can picture the divergence of density 
fluctuations as a preparation to phase separation : right above the critical point, small domains 
of high and low density start to form in the fluid; when the coexistence curve is crossed, drops 
and bubbles nucleate from these domains. 
 We already said that the critical exponents in Table 1 are the same for all fluid 
systems. The origin of this Critical Universality lies in the divergence of fluctuations. Indeed, 
macroscopic properties are no longer governed by the local behaviour of molecules but rather 
by a collective behaviour settling through long-range interactions. Hence, the average 
properties of the system are no longer functions of the individual nature of its components, 
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but rather of a given number of global parameters through which University Classes5 can be 
defined [7]. Inside a university class, the critical behaviour is identical even if the physical 
systems are very different. 
 
 Scaling laws and renormalisation 
 

 The predominance of long-range correlations was the key which allowed the 
understanding of critical phenomena in the 60s and early 70s. Indeed, if one imagines a 
system in which long-range correlations dominate, then the exact nature of the local 
molecular interaction looses relevance and only the collective behaviour at the scale of the 
correlation length matters. This collective behaviour hides the specificity of systems and leads 
to a universal behaviour. This observation led several authors into assuming the hypothesis of 
Scaling, which was later formalised through Renormalisation techniques. A first illustration 
of the idea of scaling is Widom’s conjecture, proposed in 1963 [14]. Let us write the enthalpy 
under the following form : 
 

G(T, ρ) = Gr(T, ρ) + Gs(δT, δρ)       (16) 
 

where Gr is the Regular Component of G and Gs its Singular Component. Widom’s conjecture 
was to consider that Gr is analytical while Gs is a generalised homogeneous function, meaning 
that there exist two real constants p and q such that whatever θ : 
 

 Gs(θ p δT, θ q δρ) = θ Gs(δT, δρ) ,  or   Gs(δT, δρ) = δρ1 q Gs δ T δρ p q , 1( ) . (17) 
 

In other words, the singular part of the enthalpy is Self-Similar, which means that it has the 
same functional form regardless of the proximity to the critical point, provided the right 
scaling is made. This assumption leads to several important consequences. Let us for instance 
calculate the heat capacity at constant volume, by differentiating (17) twice : 
 

∂2 G
∂T 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

= θ 2 p − 1 ∂2 Gs

∂T 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

θ p δ T , θ q δ ρ( ) +
∂2 Gr

∂T 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

= −
Cv

T
   (18) 

 
 

 By letting θ = δT - 1/ p, one finds on the critical isochore (i.e. for δρ = 0) : 

 Cv ≈ − T δ T
2 −

1
p ∂2 Gs

∂T 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ

1, 0( ) ≈ A Δ T − α , hence α = 2 −
1
p

  (19) 

As we have just shown, assuming that Gs is homogeneous leads to a relation between a 
critical exponent and the constants p and q. Through similar calculations, one finds other 
relations between critical exponents and p and q, which in turn lead to the following equalities 
once p and q are eliminated [12] : 
 

  α = 2 – β (δ + 1)   γ = β (δ – 1)    (20) 
 

Hence, Widom’s conjectures implies that the critical exponents are not independent from one 
another. Kadanoff in 1966 [15] applied the same self-similarity principle to the study of the 
Curie point in a discrete model of ferromagnetic solid (the Ising Model [16]). This model can 
easily be transposed to fluid systems, for which it takes the form of a Lattice-Gas model (the 
Curie point is then equivalent to the liquid-vapour critical point). Kadanoff obtained two more 
relations between the critical exponents, namely: 
 

                                                 
5 A universality class is defined by the spatial dimension d and by the dimension of the Order Parameter n. An 
order parameter is a quantity which is zero above the critical point and finite below. For instance, ρ – ρc is 
chosen as the order parameter for the liquid-vapour critical point (in that case, the order parameter is a scalar). 
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  γ = ν (2 – η)    dν = 2 – α    (21) 
 

 (with d the dimension of the system). These new relations, added to the ones in (20), leave 
only two independent critical exponents. 
 With the works of Kadanoff and Widom, relations between the critical exponents were 
found, together with a first idea about the origin of the critical universality. But it is only with 
the work of Wilson in 1971 that a theoretical prediction of the critical exponents was made 
possible, thanks to the Renormalisation Group Theory [17]. The renormalisation group theory 
enabled Wilson to predict the universal value of the critical exponents. It explained why they 
are universal, but also predicted that there exists universal relations between the cofactors (or 
Critical Amplitudes) (see Table 1). Critical universality can then be reformulated as: 
 

 Inside the universality class of liquid-vapour critical points, consolute critical points 
and Curie points, the critical behaviour is universally characterized by the definition of two 
scale factors only. All critical exponents are the same regardless of the system. 
 

 This definition means that in order to characterise entirely the critical divergences of a 
given system, the knowledge of two cofactors is sufficient. 
 

Influence of the critical phenomena far from the critical point 
 

 We have just seen that the properties of a fluid become singular close to a critical 
point. The definitions of critical divergences and of critical universality have been given. 
These phenomena are described as asymptotic behaviours, but when a supercritical fluid is 
used in an industrial process, a given finite distance to the critical point is reached. The range 
of  influence of critical phenomena away from the critical point is thus an important practical 
question. If one examines CO2 (one of the most used fluid in supercritical processes), several 
observations can be made (for CO2, Tc = 304.13 K, ρc = 467.8 kg/m3, Pc = 7.376 MPa). First, 
critical CO2 is a very dense fluid. In spite of its liquid-like density, critical CO2 is very 
compressible: its thermal expansion coefficient is several times that of air at room 
temperature and pressure in a large vicinity of the critical point (and 41 time larger at 
Tc + 1 K). Hence, even at 100 K above the critical point, CO2 remains both dense and very 
compressible. In the same range of temperatures, the vanishing of the thermal diffusivity is 
clearly visible: even at 100K above the critical point, heat diffusion is 350 slower in CO2 than 
in air at ambient conditions (and 11000 time slower at Tc + 1 K). These figures show that 
critical phenomena can generally be felt even far from the critical point itself. Usually, one 
can consider that the critical divergences affect the fluid significantly in a range of reduced 
temperatures going from 0 to 0.3 (that is, up to T / Tc = 1.3). Even if most industrial processes 
deliberately avoid the vicinity of the critical point, such figures show that it is always 
necessary to take into account critical divergences. 
 Extending these observations to other fluids, the critical density is seen to be typically 
a few hundreds of kilograms per cubic meters, sometimes more. Such densities are similar to 
those of usual liquids in ambient conditions. But one should not forget that, unlike liquids, 
supercritical fluids are extremely compressible media. This observation reminds us that 
supercritical fluids are media intermediate between gases and liquids, both dense and 
compressible. One consequence of their large density is to increase their ability to dissolve 
other components (which is a liquid-like behaviour). But at the same time, the coefficients of 
mass diffusion are similar to those of gases, so that the transport of dissolved components is 
very efficient (something normally observed in gases). The association of these two 
antagonistic characters explains why supercritical fluids have been so widely used in 
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extraction/separation processes. Finally, due to the critical divergences, the properties of  
supercritical fluids can be changed with only minute changes of the thermodynamic co-
ordinates. One can thus summarise the typical characters of supercritical fluids by the three 
points below : 
 

• Supercritical fluids are dense and compressible at the same time, and heat diffuses 
slowly while mass diffuses rapidly in them. 

 

• The properties of a supercritical fluid can be easily adjusted by small variations of the 
average temperature and pressure. 

 

• Even far from the critical point, the properties divergences at the critical point can be 
felt and induce unexpected dynamic responses. 

 
We will now examine the dynamic responses in question (namely, the relaxation processes 
through which supercritical fluids recover equilibrium after a perturbation). 
 
DYNAMIC RESPONSE OF SUPERCRITICAL FLUIDS 
 

Influence of gravity and anomalous heat transport 
 

 The association of a large compressibility and of a large density in the same fluid 
induces several problems linked with gravity. Indeed, a compressible fluid subjected to a 
gravity field stratifies in layers of variable densities, just like the atmosphere or the oceans. 
This stratification is governed by the hydrostatic balance between the pressure gradient and 
gravity forces, under the well-known form : 
 

∂P ∂z = − ρ z( ) g         (22) 
 

 (where z is the vertical co-ordinate and g the gravitational acceleration). If the fluid is 
kept at constant temperature and weakly stratified, then this relation can be linearised and 
solved analytically to yield: 
  ρ z( ) = ρ0 e − ∂ ρ ∂ P( )T g z        (23) 
 

Let us apply this relation to a one-meter-high container filled with CO2 at critical 
density and 1 K above the critical temperature. A relative density difference of 4% between 
the top and the bottom of the container is observed. It would take 35 meters of ambient air to 
observe the same amount of stratification. These figures illustrate a fundamental problem of 
experimental studies in supercritical fluids : the closer one gets to the critical point, the more 
inhomogeneous the fluid sample becomes. The precise measure of any physical quantity thus 
gets increasingly difficult as the critical point is approached. In parallel, the strong 
compressibility of supercritical fluids makes them extremely sensitive to convective 
instabilities. Even minute temperature differences applied to a fluid close to the critical point 
lead to strong density inhomogeneities, which in turn give birth to strong convective flows 
(for instance, strong enough to perturb a precise calorimetric experiment or to destroy delicate 
products synthesised in supercritical phase). These strong convective flows were for long 
considered as the reason for the very fast heat transfer observed in supercritical fluid 
containers despite the vanishing thermal diffusivity. As we will see below, the situation is 
really more complex. 

Due to these problems with gravity, critical fluids very soon appeared as good 
candidates for microgravity experiments [18]. A particular experiment by Nitsche and Straub 
in a 1985 flight of the Space Shuttle, though, yielded puzzling results [19]. In a classical 
thermometry experiment (in which thermal equilibrium should have been reached only 
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through diffusion owing to the absence of apparent gravity), these authors observed a very 
fast heat transfer in the fluid, which contradicted the expected critical slowing down of 
thermal diffusion. This unexpected result demonstrated that the observed anomalous heat 
transfer in near-critical fluids on the ground was not due to convection as was believed until 
then. 
 

The Piston Effect and related phenomena 
 

The puzzling observation by Nitsche and Straub was explained only 5 years later, through the 
work of Onuki [20, 21] and of two other teams working independently [22, 23]. The 
mechanism leading to the unexpectedly rapid heat transfer was named the Piston Effect, and 
is described qualitatively in figure 4. 
 

 
   
 
   Heat 
   Flux 

1. A confined supercritical fluid is heated from a boundary 
 
   
 
   Heat 
   Flux  Thermal boundary layer 
 

2. A thermal boundary layer forms by heat diffusion  
 
   
 
   Heat 
   Flux          Thermal expansion       Adiabatic compression 
 

3. The boundary layer expands and compresses the bulk fluid, acting like a piston; 
the temperature of the compressed bulk fluid rises in a fast and homogeneous way  

 
Figure 4 : Qualitative description of the Piston Effect (grey scale represents temperature) 

 
As shown in figure 4, the reason for the rapid heat transfer is the sudden and strong expansion 
of the thin thermal boundary layer where heat has initially diffused: acting like a piston, it 
drives an adiabatic compression of the bulk fluid, resulting in a homogeneous temperature 
increase. Thus, through a purely dynamic phenomena, a fluid with a very small heat 
diffusivity can nonetheless transfer heat very rapidly. Analyzing the whole process more 
closely, one concludes that the rapid expansion of the boundary layer drives a field of acoustic 
waves in the fluid (thermoacoustic convection). The adiabatic compression can be seen as the 
average effect of these thermoacoustic waves travelling back and forth in the fluid container 
at a the speed of sound. 
 Let us briefly summarize Onuki’s reasoning [21], which lead to the first quantitative 
prediction of the typical time of this process. In the absence of convection, the fluid is 
subjected to pure diffusion, and its temperature evolution should normally be described by a 
classical heat diffusion equation. However, the effect of the thermal expansion must be added 
to that picture, under the form of the work of pressure forces. Assuming that the average 
compression is a slow process compared to the propagation of sound waves, the time-varying 
pressure in the container can be considered as homogeneous to first order. Then, mass 
conservation and energetic arguments lead to the formulation of the work of pressure forces 
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as a term proportional to the average temperature in the cell. The corrected heat transfer 
equation becomes: 
 

 
  

∂T
∂ t

=
γ − 1

γ
∂
∂ t

T + D ΔT         (24) 
 

where D is the heat diffusivity of the fluid (going to zero at the critical point), < T > represents 
the spatial average of temperature T and γ is the ratio of heat capacities (not to misread as the 
critical exponent γ , commonly defined with the same notation). The influence of γ on this 
equation is interesting to observe: if γ  = 1, then the classical equation of heat diffusion is 
recovered. This corresponds to the particular case of an incompressible fluid, where obviously 
no piston effect can be observed (indeed, Mayer’s generalized relation (9) prescribes that (γ –
 1) is proportional to the fluid’s compressibility). On the other hand, if γ is different from 1 
(and it can only be larger), then the middle term of equation (24) represents a new source of 
temperature variation, associated with the compressive effect of the work of pressure forces. It 
is interesting to observe that Onuki’s reasoning is in no way restricted to supercritical fluids: 
any fluid with γ > 1 will be subjected to some degree to the Piston Effect. In other words, 
when a fluid is confined in a finite-volume cell, then the classical heat equation found in 
every textbook is only correct for purely incompressible fluids. For compressible fluids, 
equation (24) is the right equation. The reason why the middle term of equation (24) becomes 
particularly relevant for supercritical fluids is linked to critical divergences: as shown in the 
previous section, γ goes to infinity at the critical point, while D goes to zero. As the fluid gets 
closer and closer to the critical point, the diffusive term becomes smaller and smaller and the 
work of pressure forces dominates the right-hand side of the equation. This is the reason why 
the Piston Effect is so dominant in supercritical fluids, although it technically exists in any 
compressible fluid. 
 Equation (24) was solved analytically by Onuki [21] in the particular case of a near-
critical fluid contained in cell of typical length L, initially at T = T0, and whose boundaries are 
abruptly heated to T0 + ΔT. The bulk temperature of the fluid TBulk then follows the equation: 
 

TBulk = T0 + ΔT 1 − et tPE erfc t tPE( )[ ]      (25) 
 

with tPE =
tD

γ − 1( )2         (26) 

where tD is the typical heat diffusion time, here defined as tD = L2/D. A new typical 
time appears: tPE, the typical time-scale of the Piston Effect. Interestingly, it goes to zero at 
the critical point: tD goes to infinity (critical slowing down), but (γ – 1)2 goes to infinity even 
faster. tPE ∝ ε 2γ – 2α – ν – η ε≈  1,6 (where γ is now the critical exponent, as defined in table 1). 
The Piston Effect thus induces a Critical Speeding Up of temperature relaxation, 
contradicting the expected critical slowing down (and explaining Nitsche and Straub’s 
puzzling observation). 

The heuristic hypothesis of Onuki and formulas (25-26) have later been confirmed by 
the asymptotic analysis of Navier-Stokes equations, in the particular case of van der Waals 
fluids by Zappoli and Carlès [25] and for real fluids by Carlès [12, 26]. It has later been 
verified experimentally by several teams (see for instance [27]). Note that the definition of tPE 
is based on a typical length L which should be defined properly. A series of heuristic 
arguments presented by Carlès [26] lead to a general definition of L yielding good results 
regardless the geometry of the cell : the appropriate choice for L is the ratio of the total 
volume of fluid over the area of the heated surface (adiabatic boundaries counting for zero). 
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 In table 2, we compare the values of tD and tPE for several reduced temperatures, for 
CO2 confined at critical density in a 20 cm container. The difference between the two typical 
times is striking. It is clearly visible on this example that the piston effect (and not diffusion) 
is responsible for the temperature relaxation in a very large vicinity of the critical  point (up to 
100 K from Tc here). Hence, heat transfer by the Piston Effect is not restricted to a close 
vicinity of the critical point, but it affects a large portion of the supercritical domain. 
 

 Tc + 0,01 K Tc + 0,1 K Tc + 1 K Tc + 10 K Tc + 100 K 

tPE 3.7 seconds 1 minute 30 
seconds 40 minutes 11 hours and 

10 minutes 
6 days and 5 

hours 

tD
19 years and 6 

months 
3 years and 7 

months 246 days 38 days and 
16 hours 

7 days and 18 
hours 

 

Table 2 : Typical heat diffusion time (tD) and Piston Effect time 
(tPE) in CO2 at critical density confined in a 20-cm cell 

 
 The figures in Table 2 should not give the impression that a supercritical fluid reaches 
its complete equilibrium state after a typical time equal to tPE. tPE only measures the typical  
relaxation time of temperature gradients. As seen above, this fast temperature equilibration is 
due to the thermal expansion of boundary layers. These boundary layers exhibit strong density 
gradients which relax only through slow diffusion. In other words, a decoupling appears 
between the equilibration of temperature and density: temperature gradients relax on the 
typical time tPE, and density gradients on the typical time tD. 
 In figure 5, we have drawn the temperature, pressure, density and velocity profiles 
obtained by asymptotic analysis of Navier-Stokes equations (from [12]). The fluid is CO2, 
confined in a 1-cm container and subjected to a 1 Wm-2 heat flux on its left boundary (its right 
boundary being insulated). The qualitative evolution described so far is visible in these 
profiles: temperature exhibits strong gradients close to the heated wall (the thin thermal 
boundary layer, between x/L = 0 and x/L = 0.05), and rises in a perfectly homogeneous way 
everywhere else ; to these strong temperature gradients are associated strong density 
gradients, which testify of the thermal expansion of the boundary layer ; this thermal 
expansion gives birth to a velocity field in the cell, which is maximal at the outer edge of the 
boundary layer (the « piston » velocity) ; finally, one can observe that the pressure in the cell 
remains homogeneous (but not constant) throughout the whole process. All the above 
theoretical predictions have been experimentally confirmed in various occasions in the past 10 
years: the dynamics of the Piston Effect is now a well-established fact. 
 It has been mentioned above that the piston-like expansion of the boundary layer 
drove a series of acoustic waves in the bulk fluid. Although the average effect of these waves 
is now well-known experimentally, it was only very recently that the underlying 
thermoacoustic waves were observed and modelled, owing to their extremely small 
amplitudes (see the 2006 experiments by Miura et al. [28] and model by Carlès [29]). 
 The peculiar properties of near-critical fluids also give rise to very specific dynamic 
phenomena which will not be detailed here for lack of space. Among these, one can cite the 
over-heating phenomenon, by which part of the bulk fluid may reach a higher temperature 
than that of the “hot” boundaries if the fluid is in a two-phase configuration (see 
Wunenburger et al., [30]). Other interesting phenomena are the local high-speed jets observed 
in semi-confined geometries (like small cracks in the container wall), potentially important to 
explain the fast corrosion observed in supercritical oxidizing media (see Carlès [31] and 
Frölich et al. [32]). Equally, the response of near-critical fluids to forced oscillation is highly 
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specific [33], and elements suggest also that particular thermochemical couplings exist [34, 
35]. 
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Figure 5 : Temperature, density, pressure and velocity profiles in a cell of 1 cm filled with 
CO2 at critical density and at Tc + 1K, subjected on the left boundary to 

 a heat flux of 1 Wm-2 while the right boundary is adiabatic 
 
Any “classical” problem of fluid mechanics or thermics gains a new dimension close to the 
critical point, owing to the specificity of the thermophysical properties. It should thus be 
expected that many new interesting processes will be discovered in the future. 
 

Supercritical fluids and buoyant convection 
 

 The above picture omitted an important element: buoyant convection. In other words, 
what has been described above is rigorously valid only in the case of a fluid heated from the 
top, in which no convective current can form. It is therefore legitimate to wonder about 
whether the above picture remains valid in most practical conditions, namely, when the 
boundary heating takes place from all boundaries and not just from above. Beyond this initial 
question, another related issue is the characterization of the conditions under which 
convection starts in a supercritical fluid. 
 The question of the coupling between the Piston Effect and natural convection was 
first studied numerically by Amiroudine [36] and Zappoli et al. [37] in 1995. By conducting 
two-dimensional direct numerical simulations of a side-heated container filled with a near-
critical van der Waals fluid, they showed that convection and the Piston Effect coexist, each 
retaining more or less its natural time scale. This result was consistent with several ground-
based experimental observations of thermal relaxation (see for instance [38]), although no 
systematic experiment on this problem has been conducted so far (to the best of our 
knowledge). The same group recently extended these simulations to a full three-dimension 
geometry [39]. The relative decoupling between convection and the Piston Effect is an 
important result: it shows that the Piston Effect remains a key mechanism for temperature 
equilibration near the critical point, regardless of the geometry of the container or of the kind 
of heating conditions involved. In most cases, the typical time-scale of the Piston Effect is 
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much faster than that of convection, so that even if convection eventually ensues, most of the 
thermal equilibration is made by the Piston Effect. Of course, convection drastically speeds 
up the subsequent density relaxation, which otherwise would take place by slow diffusion. 
 Let us now examine under which condition buoyant convection starts in a supercritical 
fluid. As for all Newtonian fluids6, any amount of side-heating will trigger convective 
currents. The real stability issue is thus that of a bottom-heating situation, by which a thin 
fluid layer at the bottom of the container expands and may (or may not) overcome dissipation 
and start moving (Rayleigh-Bénard problem). Let us consider the idealized case of a 
supercritical fluid confined between two infinite horizontal walls, the bottom wall being 
maintained at a higher temperature than the top one. In a purely conductive configuration, the 
final steady state presents a constant vertical temperature gradient throughout the fluid 
(assuming thermal conductivity is roughly constant). Beyond a given gradient threshold 
though, this steady conductive state becomes unstable and convection ensues. This problem 
was first studied by Gitterman and Steinberg in 1969 [40], based on heuristic arguments. This 
last work was recently revisited by Carlès and Ugurtas [41], which gave a rigorous 
demonstration the following convection criterion : 
 
 

 A supercritical fluid subjected to an adverse temperature gradient ∂T ∂z  in a 
horizontal container of height L is subjected to buoyant convection if : 
 

ρ g Cv L 4

λ μ
∂ ρ
∂ T

⎛ 

⎝ 
⎜ 
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⎠ 
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P

∂ T
∂ z

+ ρ g 1 −
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⎞ 

⎠ 
⎟ 

ρ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
    > Rac   (27) 

 
Rac is a critical Rayleigh number, whose value depends on the boundary conditions 

applied at the top and bottom walls of the container. For fixed-temperature walls, Rac ≈ 1708 
(a general list of values of Rac  can be found in classical stability textbooks _ see for instance 
Chandrasekhar [36]). Hence, as just presented, the convective stability of a supercritical fluid 
can be determined by a very simple criterion, consisting in the comparison of the Rayleigh 
number of the fluid container (the left-hand side of equation (27)) with a critical Rayleigh 
number determined by the boundary conditions (the right-hand side of equation (27)). 
Although this criteria is similar to that obtained one century ago for classical incompressible 
fluids, a significant difference exists : unlike for classical fluids, the correct Rayleigh number 
here is not simply proportional to the temperature gradient ∂T ∂z  but rather to its difference 
with − ρ g (1 − Cv Cp ) ∂T ∂P( ρ) . This last expression is what meteorologists usually name 
the Adiabatic Gradient. It measures the temperature loss when a fluid particle is forced to 
climb 1 meter in the hydrostatic pressure gradient without exchanging heat with its 
environment. As can be seen in equation (27), the temperature gradient ∂T ∂z  is negative in 
the unstable case (since ∂ ρ ∂ T( )P  <  0). Subtracting the adiabatic gradient is equivalent to 
adding a positive term to ∂T ∂z : it thus increase the fluid’s stability. This observation is 
somewhat paradoxical : compressibility is responsible for the convective instability in the first 
place (the fluid expands when heated), but density stratification (which is also a consequence 
of compressibility) is a stabilising effect. The validity of criteria (27) has been experimentally 
confirmed in Helium 3 by Kogan and Meyer in 2001 [43]. In their experimental results, the 
influence of the adiabatic gradient was dominant, although the horizontal fluid cell was very 

                                                 
6 A Newtonian fluid is a fluid in which viscous stresses are proportional to the rate of deformation. Supercritical 
fluids are generally Newtonian, except very close to the critical point. 
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thin (1 mm-tall). In classical fluids, the adiabatic gradient correction would only be observed 
in very large systems such as the atmosphere or the oceans. The surprising thing in the case of 
supercritical fluids is the fact that the adiabatic gradient is predominant even at the scale of 
the laboratory or of the industrial plant. This is shown in figure 6, where the critical 
temperature gradient for convection is drawn for CO2 as a function of the average temperature 
and for layers of various heights L. For any container taller than 1 cm, the adiabatic gradient 
dominates convective stability and criterion (27) simplifies into : 

 

− ∂T ∂z  > ρ g (1 − Cv Cp ) ∂T ∂P( )ρ       (28) 
The similarity between the effect of gravity on supercritical fluids and on large-scale 
geophysical systems has driven several authors into proposing the use of supercritical fluids 
as scaled-down models for geophysical flows. Such an idea was for instance put forward by 
Berg and co-authors in 1996, who where the first to observe Internal Gravity Waves7 in small 
cells filled with supercritical fluids [44], an observation later confirmed and formalised 
theoretically by Carlès and El Khouri [45]. Although this topic is still very young, a very 
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Figure 6 : Critical temperature gradient for convective stability in supercritical CO2; 
Black dots represent criterion (27), dotted line criterion (28), and 

long dotted line the classical Rayleigh criterion (Ra = Rac). 
 

Summary of relaxation mechanisms in supercritical fluids 
 

 As we have just seen, the dynamics of supercritical fluids are governed by a number of 
mechanisms, some of which are classical while others are the consequence of the peculiar 
properties of supercritical fluids. Unlike what happens in classical fluids, these different 
mechanisms are generally decoupled (to a point) and take place on very different time-scales. 
Hence, as stated above, pressure, temperature or density perturbations in a supercritical fluid 
usually do not relax following the same laws or on the same time-scales. Table 3 summarises 
the different relaxation mechanisms : each natural thermodynamic property of the fluid is 
listed, together with the mechanism governing its relaxation and the typical time-scale on 
which this relaxation takes place. One can see that pressure perturbations relax on a very short 
time-scale thanks to acoustic waves, while temperature relaxation is governed by the Piston 
Effect. Density relaxation finally is governed either by convection or diffusion, depending on 
the nature of the heating and on geometry. Both these last mechanisms are generally longer 
                                                 
7 Internal gravity waves are longitudinal waves propagating in stratified fluid media. They are generally 
observed in large-scale systems such as the atmosphere or the oceans. 
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than the Piston Effect, which results in a relative decoupling of temperature and density 
equilibration processes (something which is never observed in classical fluid systems). 
 

Property Relaxation 
mechanism Typical time CO2 at Tc + 1 K 

in a 1-cm cell 
Asymptotic 

critical behaviour
L2 D tD =Diffusion 

Convection Density 
L2t ρ η=C s  

15 h 
20 mn 

 
 

Temperature Piston 
effect   tEP = tD Cp Cv( − 1)2

6 s  
 

Pressure Acoustics   ta = L c  60 µs  

Fluctuations Diffusion tξ = 6 π ηs ξ 3 kB T( ) 30 ns  
 

Table 3 : Mechanisms governing the relaxation of different properties close to the critical 

 
ONCLUSION 

cle, we have presented the thermophysical properties of supercritical fluids 

EFERENCES 
 la Tour C., Ann. Chim. Phys., 1822, 21 

 den Gas- en Vloeistoftoestand, Ed. 

[4] .H., Critical Phenomena in Classical Fluids, in 

[5] Liquids, Ed. 

[6] C, New York (USA), 1960 
p, Ed. 

[8] w Press (USA), 2001 

 

point; in the right-hand-side column, the upward- or downward-facing arrows represent the 
evolution of the characteristic time as the critical point is approached. 

C
 

In this arti 
and their consequences on supercritical fluids dynamics and thermics. A possible conclusion 
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XIXth century. Only 30-35 years ago, the exact origin of their peculiar properties was 
understood. Dynamic phenomena, in turn, began to be properly understood in the past 15 
years (for most of them). It thus clearly appears that most of the existing industrial 
applications of supercritical fluids were designed (at least in their principle) without the more 
recent part of the general knowledge reviewed here. It is thus no surprise that these processes 
tend to avoid as much as possible the vicinity the critical point, still often viewed as « Terra 
Incognita » by most engineers and scientists. But the recent findings made on the critical 
point should stimulate the search for new applications and processes, which would no longer 
avoid the critical point but on the contrary try to take benefit of its unmatched characteristics. 
It can be hoped that with the expanding interest of the scientific community in the study of 
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